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In a recent paper published in this journal, Kosmidis and
acheras (2007) studied the effectiveness of using the Weibull

unction in providing an adequate description of a passive release
rocess. As the above title suggests, the authors produce their diffu-
ional drug release profiles by simulating the process using a lattice
onte Carlo algorithm designed to model polymeric matrices with

patially dependent diffusivities. The purpose of this letter is not
o criticize the work of the authors but to present an alternative
pproach in describing some of their results.

It is current practice to fit drug release profiles with simple
mpirical formulae as an alternative to solving the diffusion equa-
ion analytically (which is impractical in most realistic cases).
ollowing this approach, the release profiles obtained from exper-
mental measurements (or computer simulations) are fitted with a
tretched exponential that gives the number of particles remaining
nside the drug delivery systems, N(t), as a function of time t. In the
ontext of drug delivery studies, the Weibull stretched exponential
s traditionally given the following form:

(t) = N0 exp(−atb), (1)

here N0 ≡ N(0) is equal to the total amount of drug initially present
n the matrix at time t = 0 and the exponents a and b are simply
tting parameters. Written in this manner however, the parameter
in Eq. (1) has dimensionality which depends on b (Macheras and

liadis, 2006, p. 94). This does not readily offer any physical insight.
or instance, plotting the parameter a versus any other parameter
hen yields a graph with inconsistent units.

We would like to stress the fact that the natural way to write the
eibull function is actually

(t) = N0 exp

(
−
(

t

�

)b
)

, (2)

here � = a−1/b. This is advantageous since the resulting character-
stic fitting parameter � has a consistent unit of time (Macheras and

liadis, 2006, p. 94) and can thus be compared to other natural time
cales related to the system, as we discuss next. Therefore, one can
tudy how � changes when some experimental condition is mod-
fied. Of course, one recovers the standard exponential decay e−t/�

hen b = 1. Additionally, the same argument holds when using a

t
p
a
a
d
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ower law to fit the release process (e.g., the Peppas model, Ritger
nd Peppas, 1987). We thus propose that writing the Peppas model
s

M(t)
M0

=
(

t

�˛

)˛

(3)

ould offer a similar advantage. Here, M(t) is the cumulative
mount of drugs released at time t from a hydrogel that initially
ontains M0 particles. The resulting time scale, �˛, can be directly
ompared to the Weibull characteristic time � for short times since
simple series expansion of the Weibull function gives the Peppas
ower law to first order.

We also note that for a given drug release problem, one can
efine a typical diffusion time scale using the size, R, of the sys-
em and the diffusion coefficient D of the drug molecules in the
ystem:

c = R2

2dD
, (4)

here d is the dimensionality of the system (Teraoka, 2002, p. 177).
ince the fitting times � and �˛ represent natural escape time scales,
hey can be compared to �c. A large discrepancy between the fitting
imes and the predicted diffusion time scale would normally indi-
ate that one is in the presence of anomalous diffusion. In this case
he time scale defined by Eq. (4) is not relevant. One must how-
ver exercise caution since � and �˛ are difficult to define due to
he dependence of their values on the portion of the release profile
sed to perform the fits (Casault and Slater, 2008).

In the first portion of the article (Kosmidis and Macheras, 2007),
he authors present a two dimensional (d = 2) homogeneous sys-
em of linear size L (with L = 100 and L = 200) where each initially
laced particle has the probability 1 − q to move at each time step.
he typical displacement of particles before escape is R � L/2. The
imulation data was fitted using the Weibull function written as
q. (1) and the fitting parameter a was studied as a function of

he parameter q for the two system sizes. For the reasons given
reviously, this approach does not represent the optimal way to
nalyze the simulation data. We would like to offer an alternative
nalysis. As demonstrated by the authors, this system has a clearly
efined coefficient of diffusion D = 1 − q in Monte Carlo units. The

http://www.sciencedirect.com/science/journal/03785173
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ig. 1. Rescaled dependence of the parameter a(R /4) as a function of (1 − q) for
wo (shown) system sizes (as in the article examined in this letter, b = 0.64). These
ata have been fitted with linear relationships with slopes of 0.64 and 0.71 for the
ystems of sizes R � L/2 = 50 and R = 100, respectively. The inset shows the data from
he original article (Kosmidis and Macheras, 2007).

haracteristic diffusion time for this system is simply

c = R2

4(1 − q)
. (5)

This has been briefly explored in a previous article from the same
uthors (Kosmidis et al., 2003). Since we expect normal diffusion
or this very simple system, the Weibull fitting time � in Eq. (2) must
e directly linked to the diffusion characterictic time �c defined in
q. (5). Therefore, we predict that their fitting parameter a must
cale like:

= 1
�b

∼
(

4(1 − q)
R2

)b

. (6)

As we can see, the fitting parameter a used by these authors is
ctually expected to be a non-linear function of both the system
ize R and the diffusion parameter q. As we shall now demonstrate,
t is possible to offer a clearer explanation of the results shown in
ig. 4 of their article (reproduced using a graph digitizer in the inset
f Fig. 1) using our Eq. (6). The main part of our Fig. 1 shows that
(R2/4)b varies linearly with (1 − q)b for both system sizes, in agree-
ent with Eq. (6). Moreover, the slopes are of order unity, which

ndicates that the Weibull fitting time � and the system character-
stic diffusion time �c are very close to each other. The fact that the
wo lines do not superpose is due to finite size effects (there is a
epletion effect near the outer surface of such a drug delivery sys-
em (Kosmidis and Macheras, 2007); the ratio of the surface area
o the volume decreases as 1/R in two dimensions, and this directly
mpacts the actual value of both b and � for small systems).

In principle, it should be possible to perform a similar analy-
is of Fig. 6 from their article. In this figure, they create systems
ith varying probability p of having a site with sticking proba-

ility q. We can assume, as an approximation, that the diffusion
oefficient is D ≈ (1 − pq) and use it in Eq. (4) to perform a similar
nalysis as mentioned in the previous paragraphs. Such randomly
istributed inhomogeneities will however have non-trivial effects
n the diffusive motion of the particles. For example, if the site stick-
ng probability q is high, the particles that are on these sites will
ct as obstacles for the other particles. Therefore, the real diffusion
oefficient that one must use to compute the characteristic time �c

s not proportional to 1/D; instead, it must include the non-trivial

any-particle effects mentioned above. Moreover, if both p and q

re large, one may effectively be in the presence of a fractal system
i.e., a disordered system near its percolation threshold) for which
ne expects anomalous diffusion. Finally, it is important to note
hat these authors started with 50% of the sites occupied by drug
ig. 2. Rescaled dependence of the parameter a(R2/4)b as a function of (1 − pq)b for
wo simulations with R = 50 (as in the original article, b = 0.64). The inset shows a
iew of the data from the original article.

articles; this means that the sticky sites were rapidly saturated
or p < 0.5 but remained unsaturated for p < 0.5. The physics of satu-
ated and unsaturated sticky sites is expected to be quite different,
ut the authors did not study this issue. Fig. 2 shows that there is an
pproximate linear relationship between our rescaled variables for
he simulations performed at low sticking probability q = 0.3; but
hat this does not hold for q = 0.8. Consequently, fitting the depen-
ency between a and p with a linear function (as presented by the
uthors) is not appropriate and obfuscates the physical subtleties
n the diffusional mechanism. We note that the slope is of order
nity for the q = 0.3 case in Fig. 2; therefore, we can conclude that
e are still in the presence of normal diffusion in this limit.

In conclusion, we believe that the combination of Eqs. (2) and
4) provides a better way to analyze data. Using both a Weibull
ime scale and a diffusion time scale allows one to compare
ystems in a natural way and identify those cases where normal
iffusion is probably not the main diffusion mechanism. The
raditional Weibull parameter a does not directly provide such
seful information.
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